
Journal of Chromatography A, 1057 (2004) 31–39

Estimation of significant solvent concentration ranges and its
application to the enhancement of the accuracy of

gradient predictions�
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Abstract

The solvent concentration range actually useful for gradient predictions is significantly narrower than the total range scanned in a gradient
run. This range, called “solvent informative range” (SIR), if known with the highest accuracy, allows to predict gradient retention times (tg)
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ith minimal error. The small size of the SIR supports the application of the linear solvent strength theory (LSST). Furthermore, LS
closed-form solution to the integral required to predict gradient retention times, which eliminates numerical integration, needed

etention models. A methodology that calculates the SIR by applying error analysis, and uses it to improve the accuracy in the
f tg from isocratic experiments, is proposed. The importance of those mobile-phase compositions that do not contribute sign

he prediction oftg is selectively attenuated within the prediction algorithm, relying the predictions more heavily on the SIR. As a rtg
as found to be predicted with similar accuracy using isocratic training data with regard to predictions based on gradient training
pproach is useful for all situations where the chromatographer is able to provide predictions of retention at constant solvent con
nd wish to predict the retention in gradient mode.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Gradient elution is the logical choice in reversed-phase
iquid chromatography (RPLC) for the separation of solute
ets presenting spread polarities, which under isocratic condi-
ions would lead to unfeasible analysis times. Practical appli-
ation of gradient elution implies finding the suitable gradient
rogram, which is usually a complex task. Straightforward

rial-and-error approaches are too inefficient to be useful at
outine level[1]. Fortunately, method development can be
otably expedited with the application of computer-assisted
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iquid Phase Separations and Related Techniques (HPLC 2003), held in
ice, France, in June 2003.
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E-mail address:jrtorres@uv.es (J.R. Torres-Lapasió).

optimisation strategies. The core of such techniques is al
an algorithm able to predict the retention, normally base
mathematical models.

Retention models can be developed from a priori
proaches, such as linear solvation energy relation
(LSER) that have been applied to the prediction of grad
from molecular descriptors[2–5]. However, their accurac
tends to be rather poor to be useful for optimisation purpo
More accurate results are obtained from experimental d
approaches, allowing truly reliable predictions at low c
and effort[6–10]. In this case, a reasonably small numbe
experiments should be carried out to infer the retention
haviour of each compound of interest, by regressing the
responding model parameters. The retention behaviou
be established from either isocratic or gradient experim
sets, but even in the case of using gradient experiments,
is always an underlying model relating isocratically re
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tion to composition (e.g. organic modifier content). Indeed,
gradient predictions based on interpretive approaches always
make use of models expressing these relationships.

Gradient training experiments are maximally efficient
when all standards are injected at a time, within a single
run, and the identity of each peak is unambiguously known.
Otherwise, modelling gradient retention from isocratic exper-
iments is often not only more reliable but also faster, since
no re-equilibration time is needed. Also, isocratic data can be
available from the literature or from previous data sets, and
the chromatographist may wish to prospect whether a gradi-
ent separation will give satisfactory results before carrying
out any gradient experiment.

This work covers two topics: (i) the estimation of the iso-
cratic solvent concentration range actually useful for predict-
ing the retention of a given solute under a set of gradients and
(ii) the application of this concept to enhance the accuracy of
predictions of gradient retention times. The potential applica-
tion field of this study comprehends not only the enhancement
of gradient predictions coming from isocratic experimental
data, but also from molecular properties. The most frequent
gradient optimisation case will be considered: the change in
organic solvent content in the mobile phase. Only predictions
from isocratic experimental data will be studied here.

Gradient predictions make use of experimental informa-
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solved, but it lacks of accuracy, whereas gradient integrals
including more complex models are more accurate, but they
imply heavier calculations.

We have tried to combine both advantages: apply an equa-
tion that can be algebraically solved (i.e. the linear model),
but without yielding biased predictions. In theory, this would
be possible if we were able to calculate—without perform-
ing additional experiments—the narrow concentration range
of organic modifier that each solute under a set of gradients
requires.

2. Theory

2.1. Prediction of retention

In the isocratic mode, the RPLC retention behaviour of a
given solute can be described by establishing a polynomial re-
lationship between the logarithm of the retention factor,k, and
the volume fraction of organic solvent in the aqueous–organic
mobile phase,ϕ. This dependence has been proposed to be
quadratic[13]:

logk = c0 + c1ϕ + c2ϕ
2 (1)

whereci are the regression coefficients, with characteristic
v ever,
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ion from surprisingly narrow solvent concentration ran
11,12]. Usually this range covers a small fraction of
oncentrations scanned in the gradient program. The
ydrophobic solutes are scarcely affected by the lowes
ent concentrations, whereas the least hydrophobic so
ill abandon the column soon so that they will not be

ected by the highest solvent concentrations of the gra
can. On the other hand, usually the retention-to-compo
elationship is rigorously linear only in narrow solvent c
entration ranges. Both facts taken altogether lead to the
lusion that the linear equation is theoretically able to y
ccurate predictions, provided the isocratic experiments
eveloped in the right solvent concentration range. How

he usual ranges scanned in isocratic mode are in pra
ften too wide, since more than one solute must be e
ithin adequate times under the same experimental de
he fact that the linear equation is only able to fit prop
ata taken in narrow concentration ranges gives rise to la
t when it is applied in gradient predictions. In such a c
o model the experimental behaviour, other more com
quations should be applied instead, in order to avoid b
redictions of retention.

Predictions under gradient elution imply the resolutio
n integral equation, which when involves the linear re

ion model, presents an algebraic solution and, consequ
an be computed usually rather fast. This feature is espe
nteresting for optimisation purposes, where massive c
ations are involved. Models lacking of algebraic solutio
hich is the case of more complex equations, should be
lly resolved by numerical integration. To sum up, the gr
nt integral including the linear model can be algebraic
alues for each solute and column/solvent system. How
n narrow solvent concentration ranges, a linear depend

ay also yield accurate enough results[14]:

ogk = c0 + c1ϕ = logkw − Sϕ (2)

w being the retention factor in pure water andSis the eluen
trength.

Eqs.(1) and (2)can be used to predict the retention in ei
socratic or gradient modes. In the isocratic case, Eq.(1) is
sually preferable, since the concentration ranges of pra

nterest are often wide, and in these conditions, Eq.(2) often
eads to lack of fit[11]. In contrast, the solvent concentrat
ange actually useful to predict retention in gradient elutio
ften narrower, which would make Eq.(2) in theory adequat

The elution behaviour of a solute under a given grad
rogram is expressed by the following integral equation

o =
tg−t0∫

0

dt

k(ϕ(t))
(3)

heret0 is the dead time,tg the retention time of the solu
luted under gradient conditions, andk(ϕ(t)) is the equatio
escribing the solute retention factor at the column inlet

unction of time. From this equation, the retention time ca
alculated for any gradient, providedk(ϕ(t)) be known. This
ependence is established by introducing the program
radient,ϕ = f(t), in the retention model,k= f(ϕ) (Eqs. (1)
nd (2)).

When the linear retention model is applied to the des
ion of linear gradients, the integral equation has the follow
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solution[15–17]:

tg = 1

Sϕ′ log

[
2.3k0Sϕ′t0

(
1 − tD

t0k0

)
+ 1

]
+ t0 + tD (4)

whereϕ′ is the increment rate in organic solvent (i.e. the slope
of the gradient program),tD the time delay till the gradient
formation reaches the column inlet (dwell time), andk0 is the
retention factor at the beginning of the gradient.

2.2. Use of weights in linear regression

Linear models can be expressed in matrix notation as:

y = J · � + � (5)

whereyT = (y1, y2, . . ., yn) is the transposed of the column
vector storing the responses of then experiments,�T = (β1,
β2, . . ., βm) is the transposed of the column vector contain-
ing themmodel coefficients,� stores the differences between
predictions and experimental results, andJ is then×m de-
sign matrix[18], whose value for theith experiment andjth
parameter is given by:

ji,j = ∂yi

∂βj

(6)

For non-linear models, the design matrix is usually called
J eters,
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and can be found within a single step. For this reason, any
non-linear problem is faced linearly when possible. This is
the case of linearisation of functions, where the original re-
sponse is transformed to obtain relationships like Eq.(5)(Eqs.
(1) and (2)also constitute an example of linearisation in the
chromatographic field).

Predictions achieved through linearised equations are ho-
moskedastic in the transformed response (e.g. logk), but het-
eroskedastic in the original one (e.g.k). This is usually non-
desirable, and can be compensated through weighted regres-
sion[19,20]:

� = (JT ·W · J)
−1 · JT ·W · y (10)

whereW is the weight diagonal matrix that contains the re-
ciprocal of they variance in each experiment. When weighted
linear regression is applied to compensate the transformation
of the responses, the diagonal terms of theW matrix are given
by [21]:

w = 1

s2
F

= 1

s2
f (∂F/∂f )2

∝ 1

(∂F/∂f )2
(11)

whereF is the transformed response,f is the original one, and
s2
F ands2

f are the corresponding variances. For logarithmic
transformations (e.g.F= logk andf=k in Eqs.(1) and (2)),
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acobian matrix, and depends on the model param
hereas for general linear models, it does not depen

hem. The regression process consists of finding the a
riate values of these parameters, in such a way that th
icted and experimental responses be maximally simila
should be minimal). If similarity is assessed by the le

quares criterion, the parameters can be found by:

= (JT · J)
−1 · JT · y (7)

In this equation,JT denotes the transpose of theJ ma-
rix. Eq. (7) is only a valid solution of Eq.(5) if � gathers
xclusively random errors (i.e. if� is an unbiased solution
nd there is no correlation between error and response
oskedasticity)[19]. Once the parameters have been c
uted, the precision of predictions (measured as standa
iation) for a newq experiment is given by the followin
xpression:

y,q = se

√
jq(JT · J)

−1 · jTq (8)

herejq is a vector containing the derivatives of the respo
or each of them regressed parameters andse is the pure ex
erimental error, which in the absence of bias can be ap

mated to:

e =
√∑n

i=1(yi − ŷi)2

n − m
(9)

ˆ i being the predicted response for theith experiment.
In situations whereJ does not depend on the parame

linear regression), the solution given by Eq.(7) is unique
he weights are given byw = (2.303k) [22]. Note that only
he sensitivity contribution to the variance is considere
he final expression, being the constant terms2

f neglected
he reason is that this term affects all experimental po

n a similar extent, which means that it does not have
eat influence in the regression. Provided adequate we
re applied, linear regression yields parameters identic

hose found by non-linear regression.

.3. Use of weighted linear regression when gradient
etention is predicted from isocratic data

The treatment outlined in Section2.2solves the problem
f heteroskedasticity when the function involved in the le
quares problem is different from the function that is actu
redicted. In the case of concern, minimal discrepancie

ween predicted and actualk values (and not between logk
alues) are sought out. However, the approach is only
uate when the weighting of a given experimental poin
olves exclusively information associated to that experim
his is not the case of the integral equation (Eq.(3)), since

t implies the information of several experiments: data f
wo or more isocratic retention times are required to pre
radient retention times. Thus, the relationship betwee
riginal response and the predicted one goes far beyond
le transformation. There is no straightforward equivale

inking isocratic to gradient experiments, one to one: a
icular gradient scans a range of mobile-phase composi
hich means that each of the available isocratic experim
ill take part—in a larger or smaller extent—in the predict
f retention for gradients.
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To sum up, the problem of calculating the weights consists
of measuring the importance of each isocratic composition to
foresee a given set of gradients. The greater the importance
of a given isocratic composition, the smaller its uncertainty,
and the greater its weight. We propose obtaining the weights
by outlining the problem in an inverse way: the reciprocal
of the uncertainty associated to an isocratic composition pre-
dicted from gradient experiments will yield the weights of
the isocratic-to-gradient prediction. Hence, the greater the
uncertainty in gradient-to-isocratic prediction, the lower the
weight in the isocratic-to-gradient fitting.

In previous work, a procedure to calculate these uncertain-
ties was proposed[11]. The method was based on the calcu-
lation of two Jacobian matrices: one associated to the elution
mode where the experimental data were gathered (source),
and the other to the elution mode where the predictions should
be performed (target). In isocratic-to-gradient predictions, the
weight corresponding to theith isocratic experiment is given
by:

wi = 1

s2
grd-iso,i

= 1

s2
e,grd(j iso,i(J

T
grdJgrd)

−1
jTiso,i)

(12)

where s2
grd-iso,i represents the variance associated to the

gradient-to-isocratic prediction for theith experiment,Jgrd
the Jacobian matrix containing the derivatives of the reten-
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ing the linear equation (Eq.(2)). As mentioned, this model
leads to an algebraic solution when used to predict gradient
retention. This can save computation time, which is a very
important issue for optimisation purposes.

Previous work[11] introduced the concept of “solvent in-
formative range” (SIR). The SIR is the concentration range
of organic modifier actually useful to predict a given set of
target gradients, or, alternatively, the solvent concentration
range for which a given gradient set extracts the maximal in-
formation about isocratic retention. The weights are directly
related to this concept: the larger this information, the greater
the weight. As a consequence, the SIR represents the range
that isocratic experiments should sample to predict a set of
gradients with maximal accuracy. Our purpose is not devel-
oping more experiments within the SIR once located, but to
weight the original isocratic data to enhance the predictions
using the SIR.

The size of the SIR is usually rather narrow in comparison
to the increments in organic solvent between experiments in
isocratic designs. In addition, the SIR depends on the con-
sidered solute. This means that each solute would require
a particular experimental design to get maximal accuracy in
the prediction of a given gradient. Both drawbacks altogether
seem to make the direct application of weights unfeasible: if
a design including a large number of experiments were avail-
a ias
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ion times of the gradients that should be predicted andJiso,i
s the row-vector containing the derivatives of the reten
ime for theith isocratic composition. More details are giv
lsewhere[11].

These,grd term represents the pure experimental erro
radient retention time, which is unknown, since the so
xperimental data are isocratic. This term gathers the e
ssociated to the whole set of gradients. Anyway, and

arly to Eq.(11), se,grd can be neglected because being c
tant, it modifies the significance of each experimental p
n the same extent, not changing thus their relative im
ance.

The weights calculated with Eq.(12) do not consider th
ogarithmic transformation in the response. Since the fi
s not carried out by regressing the isocratict values, but logk,
he weights corresponding to this additional transforma
Eq.(11)) should be included, yielding finally:

i = 1

(∂ logk/∂t)2(j iso,i(J
T
grdJgrd)

−1
jTiso,i)

= (2.303(ti − t0))2

j iso,i(J
T
grdJgrd)

−1
jTiso,i

(13)

.4. Enhancement of isocratic-to-gradient predictions

The weighted computation procedure outlined above
e applied to any retention model. This section presen
pplication of Eq.(13) to enhance gradient predictions
ble, fitting the linear equation inside the SIR without b
ould be possible. Unfortunately, this is absolutely unpr
al. We can, however, mimic that comprehensive hypothe
esign by generating artificial experiments with an unbi
quation (the quadratic equation). The following algori
pplies this strategy (see alsoFig. 1).

(i) The retention behaviour is first modelled in the wh
range of the isocratic design, using an unbiased e
tion, such as Eq.(1). The experimental isocratic data
fitted by applying the conventional weights given by
(11), which will be considered as initial weights.

(ii) Although no experimental gradient data are actu
used in this computation, the set of fitted parame
in Eq. (1) will be further considered as fitted from g
dient data. The weights are calculated according to
(13)for a regular distribution of solvent concentratio

iii) The weights are made null at those solvent conce
tions where the solute never elutes under any pla
gradient. For determining this information, the solv
concentration at which each solute leaves the colum
first computed for each target gradient using the e
tion fitted in (i), and the highest solute exit value fou
is kept. The weights corresponding to concentrat
larger than this maximal value are set to zero.
weights for solvent concentrations lower than the low
starting concentration among all planned gradients
also set to zero.

(iv) Eq. (2) is fitted with the values of retention calcula
previously from Eq.(1), applying the weights comput
in (ii) and (iii).
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Fig. 1. Flow diagram illustrating the algorithm used for the calculation of weights (see Section2.4).

(v) Steps (ii)–(iv) are iterated, using in (ii) the model param-
eters obtained in (iv) instead of Eq.(1). Convergence is
usually reached within the first iteration.

3. Experimental

3.1. Reagents

Sixteen�-blockers were studied: acebutolol (Italfármaco,
Alcobendas, Madrid, Spain), alprenolol, pindolol, sotalol
(Sigma, St. Louis, MO), atenolol (Zeneca Farma, Madrid),
bisoprolol, propranolol, practolol (ICI-Farma, Madrid), car-
teolol (Miquel-Otsuka, Barcelona, Spain), celiprolol (Rhône-

Poulenc Rorer, Alcorćon, Madrid), esmolol (Polfa, Starog-
ard, Poland), labetalol (Glaxo, Tres Cantos, Madrid), meto-
prolol, oxprenolol (Ciba-Geigy, Barcelona), nadolol (Squibb,
Esplugues de Llobregat, Barcelona), and timolol (Merck,
Sharp & Dohme, Madrid). Acebutolol, atenolol, carteolol,
celiprolol, labetalol, metoprolol, nadolol, oxprenolol, propra-
nolol, and timolol, were kindly donated by the cited pharma-
ceutical laboratories. The drugs were dissolved in a small
amount of methanol and diluted with water. The concentra-
tion of the stock and injected solutions was 100 and 10�g/ml,
respectively. These solutions remained stable during at least
2 months at 4◦C.

Mobile phases were prepared with acetonitrile (Scharlab,
Barcelona), buffered at pH 3 with 0.01 M di-sodium hydro-
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gen phosphate and hydrochloric acid (Panreac, Barcelona).
The mobile phases and drug solutions to be injected were
vacuum filtered through 0.45�m Nylon membranes (Mi-
cron Separations, Westboro, MA). Nanopure water (Barn-
stead, Sybron, Boston, MA) was used throughout. Acetone
(Guinama, Barcelona) was used to measure the dwell time.

3.2. Apparatus

An Agilent (Model HP 1100, Waldbronn, Germany) chro-
matograph, equipped with a quaternary pump, a UV–vis
detector, and an autosampler, was used. All components
were governed by a PC. An XTerra MS C18 column
(150 mm× 4.6 mm i.d., 5�m particle size), and a guard col-
umn packed with the same material (20 mm× 3.0 mm i.d.,
5�m particle size) (Waters, MA), were used. The detection
wavelength was 225 nm for all�-blockers, except for timolol,
which was detected at 300 nm. The flow-rate was 1.0 ml/min,
and the injection volume, 20�l. The whole study was car-
ried out at room temperature (25± 2◦C). Duplicate injec-
tions were made for each chromatogram.

The dead time (1.73 min) was measured as the first base-
line deviation, and the dwell time (1.53 min) as indicated in
Ref. [23], by running a blank gradient where acetone was
increased from 0 to 1% in 20 min. For this determination,
t were
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Table 1
Gradient retention times (tg, min) for different runsa

Compound tG (min)

20 30 40 50

Atenolol 6.22 6.88 7.06 7.22
Practolol 7.25 7.98 8.45 8.96
Sotalol 6.44 7.04 7.18 7.41
Nadolol 10.87 13.00 14.83 16.58
Carteolol 10.25 12.48 14.00 15.32
Pindolol 11.25 13.44 14.82 16.15
Timolol 14.14 17.84 20.73 23.31
Metoprolol 15.13 18.76 21.94 24.88
Acebutolol 14.39 18.14 21.22 24.21
Esmolol 17.22 22.15 26.11 29.87
Celiprolol 17.28 22.33 26.78 31.02
Labetalol 19.95 26.26 31.62 36.89
Oxprenolol 18.57 23.76 28.32 32.69
Bisoprolol 19.19 24.90 29.81 34.48
Propranolol 21.90 28.64 34.68 40.61
Alprenolol 22.16 29.19 35.33 41.21

a Acetonitrile concentration was increased from 5 to 30% in all cases.

are shown inFig. 2. Boxes (A–D) and (E) correspond to
isocratic-to-gradient and gradient-to-gradient predictions, re-
spectively. (A–C) depicts the errors obtained with the linear
equation and different types of weights: (A) unweighted re-
gression, (B) weighted regression considering only the loga-
rithmic transformation (Eq.(11)), and (C) the weighted pro-
cedure outlined in Section2.4. For comparative purposes,
two additional error boxes are shown, corresponding to: (D)
the quadratic equation conventionally weighted, and (E) a
straightforward prediction from gradient data (without any
transference between elution modes, that is, gradient-to-
gradient prediction). In the latter case, the linear equation was

F xperi-
m were
o d dif-
f peri-
m q.
( ted,
a

he times at the beginning and end of the steep increase
aken. The signal was monitored at 280 nm. Home bu
outines, written in MATLAB 6.5 (The Mathworks, Natic
A), were developed for data treatment.

. Results and discussion

Two experimental designs were carried out, one of t
n isocratic and the other in gradient mode. The ranges o
onitrile concentration in the mobile phases were select
void retention times too close to the void volume or ab
0 min. In the isocratic case, chromatographic param
ere obtained from six mobile phases containing 5, 10
0, 25, and 30% (v/v) acetonitrile at pH 3. The acidity
anced notably peak shape, owing to protonation of co
ilanol groups. Due to the relatively wide range of so
olarities (octanol–water partition coefficients in the ra

ogPo/w = 1–3), measurement of retention times in all m
ile phases of the design was unfeasible. All available
ratic data were used to fit the retention models and pr
he gradients. The repeatability of solute retention time
he isocratic mode, obtained from six replicated injecti
as in the range 0.05–0.15% (relative standard devia
validation gradient design, including four runs where
odifier content was increased from 5 to 30% aceton

n 20, 30, 40, and 50 min, was carried out to test the me
erformance.

Table 1shows the experimental gradient retention tim
or the 16�-blockers. The errors (predicted minus exp
ental gradient retention times), using different strate
ig. 2. Box and Whiskers plots showing the differences between e
ental and predicted gradient retention times. The predicted values
btained from isocratic experiments (A–D) as source elution mode an

erent fitting strategies. The fitting with the training set of gradient ex
ents (E) is given as reference. Eq.(2) was used in (A–C) and (E), and E

1) in (D). Strategies: (A) unweighted, (B and D) conventionally weigh
nd (C) weighted using the algorithm described in Section2.4.
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used. The accuracy of this equation for gradient-to-gradient
predictions was checked in previous work[11].

Prediction errors obtained using the different weighting
strategies confirmed that both the unweighted (A) and the tra-
ditionally weighted (B) regressions do not focus adequately
the fittings to yield the minimal error in isocratic-to-gradient
predictions. The more sophisticated weighted algorithm ex-
plained above (C) is needed to enhance the predictions. The
residuals obtained with the parabolic equation (D) are smaller
than those achieved with the linear equation (A–C). The
parabolic equation was numerically integrated, although a
close algebraic solution exists, but involving the error func-
tion [24]. For other retention models, which do not have any
analytical solution, the proposed approach may be a real al-
ternative. As expected, the use of gradients as source data (E)
yielded the best results.Table 2presents the relative errors,
expressed as percentages, for each solute. To avoid inflated
errors in the fastest gradients, a modification of the usual
relative error definition was used[25]:

RE (%)= 100

∑n
i=1|tg,i − t̂g,i|∑n

i=1tg,i

(14)

where tg,i and t̂g,i are the experimental and calculated re-
tention times, respectively, for theith gradient andn is the
number of gradients in the validation set. As can be seen,
t ion-
a talol,
n stest
s

be
a ome
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i nges
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A 3
P 0
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C 3
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T 0
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E 6
C 3
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O 7
B 5
P 8
A 4

M 7

in the fitting parameters, since a certain lack of fit remains.
This does not happen when the correct equation (i.e. the
quadratic one) is applied, or the linear equation is adequately
corrected with weights. In the latter case, the effects of the
inclusion/exclusion of a given experimental point on predic-
tions are reduced, since the weighting function governs the
importance of each experiment.Fig. 3 shows a comparison
of two experimental chromatograms with the corresponding
predictions performed by applying the weighted (C) and un-
weighted (A) approaches. As observed, the agreement is more
satisfactory with the proposed approach.

Fig. 4 illustrates how the weighted fitting works. In this
figure, the differences in the calculated retention factors be-
tween each studied method (A, B, C, and E) and the parabolic
fitting (D), which was taken as reference, are plotted as a func-

Fig. 3. Experimental (a and d) and predicted chromatograms using the pro-
posed weighted strategy C (b and e), and the unweighted method A (c and
f). Acetonitrile concentration was linearly increased from 5 to 30% in: (a–c)
20 min and (d–f) 50 min. Compounds: (1) Sotalol, (2) pindolol, (3) acebu-
tolol, (4) celiprolol, (5) labetalol, (6) alprenolol, (7) practolol, (8) nadolol,
(9) metoprolol, (10) oxprenolol, and (11) propranolol.
he errors obtained with the unweighted (A) and tradit
lly weighted (B) regressions depend on the solute. So
adolol, carteolol, and pindolol, which are among the fa
olutes, gave rise to the highest errors.

As commented, not all experimental conditions could
ssayed for modelling the retention of all solutes, since s
f them were eluted too close to the void volume or
ond 60 min. The inclusion or exclusion of a given po
n the experimental design may introduce drastic cha

able 2
elative errors in percentage according to Eq.(14), for the 16�-blockers
btained with the strategies proposed in Section 4

ompound Fitting strategy

A B C D E

tenolol 1.1 2.9 0.98 1.05 0.9
ractolol 2.7 3.7 0.76 0.76 0.4
otalol 11.1 3.2 0.69 0.74 0.7
adolol 10.2 1.6 0.47 0.49 0.4
arteolol 15.4 4.4 0.72 0.69 0.5
indolol 13.2 3.7 1.01 0.97 0.4
imolol 3.5 0.85 0.51 0.46 0.3
cebutolol 2.0 2.0 0.36 0.43 0.2
smolol 4.8 1.7 0.55 0.31 0.2
eliprolol 3.6 0.60 0.25 0.17 0.1
abetalol 4.5 3.3 0.91 0.67 0.2
xprenolol 1.7 0.30 0.33 0.45 0.2
isoprolol 1.7 0.40 0.66 0.34 0.1
ropranolol 1.8 1.4 0.56 0.39 0.2
lprenolol 1.5 1.1 0.32 0.20 0.1

eana 5.3 2.1 0.61 0.54 0.3
a Mean error (extended to all solutes) is also given.
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tion of solvent concentration, for three representative solutes:
a fast (sotalol), an intermediate (acebutolol), and a slow (al-
prenolol) solute. The differences between the experimental
and predicted values obtained with the parabolic equation are
also overlaid as squares. The weighting function for method
C (Section 2.4) is depicted at the top ofFig. 4a–c. The mag-
nitude of errors with regard to the SIR location should be
considered for the analysis of the results. As can be seen,
linear fittings tend to produce larger errors when the total
concentration range is considered. Only the parabolic fitting
(which is represented as the zero line) gives low errors in the
whole solvent concentration range. Both the unweighted (A)
and the conventionally weighted (B) fittings produce large
errors within the SIR. On the other hand, the results obtained
with method C are close to those achieved using gradient
source data (E), yielding smaller errors within the SIR.

Note that the weights,w, are set to zero at the largest con-
centration above which the solute is never eluted within the
runs in the gradient experimental design (see Section2.4,

F
c
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E
s
l
t
T
m
b
s

step (iii)). The plotted weights inFig. 4 (top diagram) de-
tect satisfactorily the SIR, which is important to describe the
gradient elution behaviour. The SIR is the solvent concentra-
tion region where high values of the weighting function are
found. As the polarity of solutes decreases, the SIR range is
shifted to higher values of acetonitrile concentration. Thus,
the SIR is located in the range 6–8% acetonitrile for sotalol,
11–17% for acebutolol, and 18–22% for alprenolol. These
ranges are well located by the weighting function, which
will be translated in enhanced predictions with the linear
equation.

5. Conclusions

The most widely applied model in gradient predictions is
the linear equation (Eq.(2)), since the derived general integral
can be algebraically solved under linear gradients. This may
present practical advantages in situations that require mas-
sive calculations (e.g. optimisation of gradient conditions).
For gradient-to-gradient predictions, where no data should
be transferred between elution modes, the results are highly
satisfactory. Gradients can be also predicted when an iso-
cratic model is available. However, these predictions can be
deficient, since the linear equation is often unable to fit accu-
r ges.
T the
i sis.
T ntra-
t the
d dic-
t dels,
b ents
i ime.

adi-
e tion
t ratic
i ients
c SIR
r rcely
r

t the
S use
t t the
ig. 4. Errors for the different weighted strategies as a function of solvent
oncentration. The lines in the bottom diagrams correspond to the differences
etween the retention factors (k) calculated with Eq.(2) and calculated with
q.(1) (D), whose results were taken as reference (kr). Five different fitting
trategies (seeFig. 2 for meaning) were considered: (A) thin solid line, (B)
ong dashed, (C) thick solid, and (E) short dashed. The difference between
he experimental points and the parabolic predictions are overlaid as squares.
he corresponding weighting function is plotted at the top of the figure for
ethod C. The vertical line indicates the maximal solvent concentration
eyond which the solute never elutes in gradient mode. Compounds: (a)
otalol, (b) acebutolol, and (c) alprenolol.

S qua-
t plied
t the
g nts
b can-
n not
s range
i mall
b

en-
t e on
t n save
ately retention data from wide solvent concentration ran
he problem is solved by weighting the regression in

socratic domain with factors calculated from error analy
he weights give more importance to the solvent conce

ions (solvent informative range) that are significant for
esired predictions. The approach yields a quality of pre

ions comparable to that achieved with more complex mo
ut without requiring numerical integration, which repres

n certain situations a considerable save in calculation t
The concept of SIR offers a different perspective on gr

nt elution, providing a deep examination of the informa
hat a given gradient extracts, which is related with isoc
nformation. In the considered example, where the grad
omprise an increase from 5 to 25% acetonitrile, the
epresents ranges of acetonitrile from ca. 2% for sca
etained solutes to 5% for retained solutes.

The aim of the proposed methodology is not to detec
IR to include further more experiments within it, but to

he original set of experiments (that can be within or ou
IR of each solute), to fit an unbiased equation. This e

ion is used to calculate weights. The weights are then ap
o the linear equation to obtain unbiased predictions. In
iven example, typically three to five isocratic experime
y solute were developed. Problems requiring a wide s
ing of modifier compositions (e.g. 0 to 90–100%) are
o frequent, except in screening studies. If the covered
s really wide, then the quadratic equation can present s
ias, which can affect the accuracy of the SIR.

The bottleneck of the methodology can be the experim
al work needed in isocratic mode, but previous knowledg
he components nature and a wise experimental plan ca
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considerable time. Also, no experiments are required when
the chromatographist is adapting isocratic data previously
acquired, taken from the literature, or obtained by molecular
modelling approaches. In all these cases, the outlined tech-
nique will be valid.
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