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Abstract

The solvent concentration range actually useful for gradient predictions is significantly narrower than the total range scanned in a gradient
run. This range, called “solvent informative range” (SIR), if known with the highest accuracy, allows to predict gradient retentiag)times (
with minimal error. The small size of the SIR supports the application of the linear solvent strength theory (LSST). Furthermore, LSST allows
a closed-form solution to the integral required to predict gradient retention times, which eliminates numerical integration, needed with other
retention models. A methodology that calculates the SIR by applying error analysis, and uses it to improve the accuracy in the prediction
of ty from isocratic experiments, is proposed. The importance of those mobile-phase compositions that do not contribute significantly to
the prediction oty is selectively attenuated within the prediction algorithm, relying the predictions more heavily on the SIR. As dgresult,
was found to be predicted with similar accuracy using isocratic training data with regard to predictions based on gradient training data. The
approach is useful for all situations where the chromatographer is able to provide predictions of retention at constant solvent concentration,
and wish to predict the retention in gradient mode.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction optimisation strategies. The core of such techniques is always
an algorithm able to predict the retention, normally based on
Gradient elution is the logical choice in reversed-phase mathematical models.
liquid chromatography (RPLC) for the separation of solute  Retention models can be developed from a priori ap-
sets presenting spread polarities, which under isocratic condi-proaches, such as linear solvation energy relationships
tions would lead to unfeasible analysis times. Practical appli- (LSER) that have been applied to the prediction of gradients
cation of gradient elution implies finding the suitable gradient from molecular descriptorf2—5]. However, their accuracy
program, which is usually a complex task. Straightforward tends to be rather poor to be useful for optimisation purposes.
trial-and-error approaches are too inefficient to be useful at More accurate results are obtained from experimental design
routine level[1]. Fortunately, method development can be approaches, allowing truly reliable predictions at low cost
notably expedited with the application of computer-assisted and effort{6—10]. In this case, a reasonably small number of
experiments should be carried out to infer the retention be-
T _ ‘ haviour of each compound of interest, by regressing the cor-
. Thls work was pre.sented atthe 27th Symp_osmm on High Performanc_e responding model parameters. The retention behaviour can
',:l'i(llé'd;:r?:: iﬁ%ﬁr:“z%%z_a"d Related Techniques (HPLC 2003), held iny, o oqtaplished from either isocratic or gradient experimental
* Corresponding author. Tel.: +34 96 354 3003; fax: +34 96 354 4436, SEtS, but even in the case of using gradient experiments, there
E-mail addressjrtorres@uv.es (J.R. Torres-Lapai is always an underlying model relating isocratically reten-
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tion to composition (e.g. organic modifier content). Indeed, solved, but it lacks of accuracy, whereas gradient integrals
gradient predictions based on interpretive approaches alwaysncluding more complex models are more accurate, but they
make use of models expressing these relationships. imply heavier calculations.

Gradient training experiments are maximally efficient We have tried to combine both advantages: apply an equa-
when all standards are injected at a time, within a single tion that can be algebraically solved (i.e. the linear model),
run, and the identity of each peak is unambiguously known. but without yielding biased predictions. In theory, this would
Otherwise, modelling gradient retention from isocratic exper- be possible if we were able to calculate—without perform-
iments is often not only more reliable but also faster, since ing additional experiments—the narrow concentration range
no re-equilibration time is needed. Also, isocratic data can be of organic modifier that each solute under a set of gradients
available from the literature or from previous data sets, and requires.
the chromatographist may wish to prospect whether a gradi-
ent separation will give satisfactory results before carrying
out any gradient experiment. 2. Theory

This work covers two topics: (i) the estimation of the iso-
cratic solvent concentration range actually useful for predict- 2.1. Prediction of retention
ing the retention of a given solute under a set of gradients and
(i) the application of this concept to enhance the accuracy of  In the isocratic mode, the RPLC retention behaviour of a
predictions of gradient retention times. The potential applica- given solute can be described by establishing a polynomial re-
tion field of this study comprehends not only the enhancementlationship between the logarithm of the retention fadtcand
of gradient predictions coming from isocratic experimental the volume fraction of organic solventin the agueous—organic
data, but also from molecular properties. The most frequent mobile phaseg. This dependence has been proposed to be
gradient optimisation case will be considered: the change in quadratid13]:
organic solvent content in the mobile phase. Only predictions 2
from isocratic experimental data will be studied here. logk = co + c1¢p + c29 (1)

Gradient predictions make use of experimental informa- \yherec; are the regression coefficients, with characteristic

tion from surprisingly narrow solvent concentration ranges 4jyes for each solute and column/solvent system. However,

[11,12} Usually this range covers a small fraction of the j, narrow solvent concentration ranges, a linear dependence
concentrations scanned in the gradient program. The mostmay also yield accurate enough res{i]:

hydrophobic solutes are scarcely affected by the lowest sol-
vent concentrations, whereas the least hydrophobic solutedogk = cg + c1¢ = logky — S¢ (2
will abandon the column soon so that they will not be af-

fected by the highest solvent concentrations of the gradient

scan. On the other hand, usually the retention-to-composition Egs(1)and (2 b dt dictthe retentionin eith
relationship is rigorously linear only in narrow solvent con- . qs:( )and( pan € usedtopredictineretention in either
isocratic or gradient modes. In the isocratic case,(Epis

centration ranges. Both facts taken altogether lead to the con- : ; .
clusion that the linear equation is theoretically able to yield psually preferable, since the.concentrat|or.1 ranges of practical
accurate predictions, provided the isocratic experiments Were:zgrsf; ?z;il?gff%;vll?elh?:r(])?rl?atsrletsheecs?or}sgﬁrz]:s()'fcg%fttg:ion
developed in the right solvent concentration range. However, : '

the usual ranges scanned in isocratic mode are in practice,range actually useful to predict retention in gradient elution is

often too wide, since more than one solute must be eIutedOlcten narrower, WhiCh.WOU|d make E(Q)intheory.adequate_.

within adequate times under the same experimental design. The elytlon behaviour of a SOM? ur)der agwen glrad.lent

The fact that the linear equation is only able to fit properly program is expressed by the following integral equation:

data taken in narrow concentration ranges gives rise to lack of 1910

fit when it is applied in gradient predictions. In such a case, fo = / dr 3)

to model the experimental behaviour, other more complex k(o))

equations should be applied instead, in order to avoid biased

predictions of retention. whereto is the dead timetg the retention time of the solute
Predictions under gradient elution imply the resolution of eluted under gradient conditions, ak{g(t)) is the equation

an integral equation, which when involves the linear reten- describing the solute retention factor at the column inlet as a

tion model, presents an algebraic solution and, consequentlyfunction of time. From this equation, the retention time can be

can be computed usually rather fast. This feature is especiallycalculated for any gradient, providé&gp(t)) be known. This

interesting for optimisation purposes, where massive calcu-dependence is established by introducing the programmed

lations are involved. Models lacking of algebraic solutions, gradient,p =f(t), in the retention modek=1(¢) (Egs. (1)

which is the case of more complex equations, should be usu-and (2).

ally resolved by numerical integration. To sum up, the gradi-  When the linear retention model is applied to the descrip-

ent integral including the linear model can be algebraically tion oflinear gradients, the integral equation has the following

kw being the retention factor in pure water &g the eluent
strength.
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solution[15-17}

1 p
=— | 2. ‘to[1—- —
Iy Sy og[ koS¢ to( s

)+1} +to+1mp  (4)
0K0

wherey’ is the increment rate in organic solvent (i.e. the slope
of the gradient programjp the time delay till the gradient
formation reaches the column inlet (dwell time), &gds the
retention factor at the beginning of the gradient.

2.2. Use of weights in linear regression

Linear models can be expressed in matrix notation as:

®)

wherey' =(y1, y», ..., yn) is the transposed of the column
vector storing the responses of thexperimentsp’ = (81,

B2, ..., Bm) is the transposed of the column vector contain-
ing themmodel coefficients stores the differences between
predictions and experimental results, ahid then x m de-
sign matrix[18], whose value for théh experiment angth
parameter is given by:

y=J B+e

i
B,
For non-linear models, the design matrix is usually called

Jacobian matrix, and depends on the model parameters
whereas for general linear models, it does not depend on

Jij= (6)

them. The regression process consists of finding the appro-

priate values of these parameters, in such a way that the pre
dicted and experimental responses be maximally similar (i.e.
€ should be minimal). If similarity is assessed by the least-

squares criterion, the parameters can be found by:

B=@"-3) 3Ty (7)

In this equation)T denotes the transpose of thema-
trix. Eq. (7) is only a valid solution of Eq(5) if € gathers
exclusively random errors (i.e. §§ is an unbiased solution),
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and can be found within a single step. For this reason, any
non-linear problem is faced linearly when possible. This is
the case of linearisation of functions, where the original re-
sponse is transformed to obtain relationships like( EEqgs.

(1) and (2)also constitute an example of linearisation in the
chromatographic field).

Predictions achieved through linearised equations are ho-
moskedastic in the transformed response (e.gk)idgut het-
eroskedastic in the original one (elgy. This is usually non-
desirable, and can be compensated through weighted regres-
sion[19,20}

B=@T-w.2) . aT.w.y (10)

whereW is the weight diagonal matrix that contains the re-

ciprocal of they variance in each experiment. When weighted

linear regression is applied to compensate the transformation

ofthe responses, the diagonal terms oMhenatrix are given

by [21]:
1

w=-3

SE

~ S2(0F/0f)?  (0F/af)?

(11)

whereF is the transformed respongés the original one, and

s+ ands are the corresponding variances. For logarithmic
transformations (e.¢= =logk andf=k in Egs.(1) and (2),

the weights are given by = (2.30%)? [22]. Note that only
the sensitivity contribution to the variance is considered in
the final expression, being the constant t eglected.
The reason is that this term affects all experimental points

in a similar extent, which means that it does not have any

neat influence in the regression. Provided adequate weights
are applied, linear regression yields parameters identical to
those found by non-linear regression.

2.3. Use of weighted linear regression when gradient
retention is predicted from isocratic data

The treatment outlined in Secti@2 solves the problem

and there is no correlation between error and response (ho-of heteroskedasticity when the function involved in the least-
moskedasticity]19]. Once the parameters have been com- squares problem is different from the function that is actually
puted, the precision of predictions (measured as standard depredicted. In the case of concern, minimal discrepancies be-
viation) for a newq experiment is given by the following  tween predicted and actuklvalues (and not between l&g
expression: values) are sought out. However, the approach is only ade-

— quate when the weighting of a given experimental point in-
Sy.q = Se\/] q(JT o) j; (8) volves exclusively information associated to that experiment.
wherej 4 is a vector containing the derivatives of the response

This is not the case of the integral equation (E)), since
for each of thenregressed parameters agds the pure ex-

it implies the information of several experiments: data from
) ST . two or more isocratic retention times are required to predict
perimental error, which in the absence of bias can be approx-

gradient retention times. Thus, the relationship between the

imated to: original response and the predicted one goes far beyond a sim-
S (i — yi)z ple transformation. There is no straightforward equivalence
Se = = 9) linking isocratic to gradient experiments, one to one: a par-
n—m

ticular gradient scans a range of mobile-phase compositions,
y; being the predicted response for itieexperiment. which means that each of the available isocratic experiments

In situations wherd does not depend on the parameters will take part—in a larger or smaller extent—in the prediction
(linear regression), the solution given by K@) is unique of retention for gradients.
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To sum up, the problem of calculating the weights consists ing the linear equation (Eq2)). As mentioned, this model
of measuring the importance of each isocratic composition to leads to an algebraic solution when used to predict gradient
foresee a given set of gradients. The greater the importanceetention. This can save computation time, which is a very
of a given isocratic composition, the smaller its uncertainty, important issue for optimisation purposes.
and the greater its weight. We propose obtaining the weights  Previous wor11] introduced the concept of “solvent in-
by outlining the problem in an inverse way: the reciprocal formative range” (SIR). The SIR is the concentration range
of the uncertainty associated to an isocratic composition pre-of organic modifier actually useful to predict a given set of
dicted from gradient experiments will yield the weights of target gradients, or, alternatively, the solvent concentration
the isocratic-to-gradient prediction. Hence, the greater the range for which a given gradient set extracts the maximal in-
uncertainty in gradient-to-isocratic prediction, the lower the formation about isocratic retention. The weights are directly
weight in the isocratic-to-gradient fitting. related to this concept: the larger this information, the greater

In previous work, a procedure to calculate these uncertain-the weight. As a consequence, the SIR represents the range
ties was proposefd 1]. The method was based on the calcu- that isocratic experiments should sample to predict a set of
lation of two Jacobian matrices: one associated to the elutiongradients with maximal accuracy. Our purpose is not devel-
mode where the experimental data were gathered (source)pping more experiments within the SIR once located, but to
and the otherto the elution mode where the predictions shouldweight the original isocratic data to enhance the predictions
be performed (target). Inisocratic-to-gradient predictions, the using the SIR.

weight corresponding to thh isocratic experiment is given The size of the SIR is usually rather narrow in comparison
by: to the increments in organic solvent between experiments in
1 1 isocratic designs. In addition, the SIR depends on the con-
w = — = : — (12) sidered solute. This means that each solute would require
Sgrd-isqi Sigrd(J iso’i(\]grd\]grd) liTso,i) a particular experimental design to get maximal accuracy in

) ) ) the prediction of a given gradient. Both drawbacks altogether
where sg,isq; represents the variance associated to the seem to make the direct application of weights unfeasible: if

gradient-to-isocratic prediction for théh experimentJgrq a design including a large number of experiments were avail-
the Jacobian matrix containing the derivatives of the reten- gpje, fitting the linear equation inside the SIR without bias
tion times of the gradients that should be predicted.hgg would be possible. Unfortunately, this is absolutely unpracti-

is the row-vector containing the derivatives of the retention 5| \We can, however, mimic that comprehensive hypothetical

time for theith isocratic composition. More details are given  gesign by generating artificial experiments with an unbiased

elsewhergl11]. _ ~equation (the quadratic equation). The following algorithm
The se grgterm represents the pure experimental error in gppjies this strategy (see als. 1).

gradient retention time, which is unknown, since the source

experimental data are isocratic. This term gathers the errors (i) The retention behaviour is first modelled in the whole

associated to the whole set of gradients. Anyway, and simi- range of the isocratic design, using an unbiased equa-
larly to Eq. (11), segra can be neglected because being con- tion, such as E1). The experimental isocratic data are
stant, it modifies the significance of each experimental point fitted by applying the conventional weights given by Eq.
in the same extent, not changing thus their relative impor- (11), which will be considered as initial weights.
tance. (i) Although no experimental gradient data are actually
The weights calculated with E¢12) do not consider the used in this computation, the set of fitted parameters
logarithmic transformation in the response. Since the fitting in Eq. (1) will be further considered as fitted from gra-
is not carried out by regressing the isocratialues, butlog, dient data. The weights are calculated according to Eq.
the weights corresponding to this additional transformation (13)for a regular distribution of solvent concentrations.
(Eq.(11)) should be included, yielding finally: (iiiy The weights are made null at those solvent concentra-
1 tions where the solute never elutes under any planned
w; = > T T gradient. For determining this information, the solvent
(@1ogk/31)"(iso,i (Jgradara) Tiso.r) concentration at which each solute leaves the column is
(2.303¢; — 10))? ﬁrst clomp.ute'd for each tgrget gradient u_sing the equa-
= - = T (13) tion fitted in (i), and the highest solute exit value found
]iso,i(‘Jgrd‘]grd) liso,i is kept. The weights corresponding to concentrations

larger than this maximal value are set to zero. The
weights for solvent concentrations lower than the lowest
2.4. Enhancement of isocratic-to-gradient predictions starting concentration among all planned gradients are
also set to zero.
The weighted computation procedure outlined above can (iv) Eq. (2) is fitted with the values of retention calculated
be applied to any retention model. This section presents an previously from Eq(1), applying the weights computed
application of Eq.(13) to enhance gradient predictions us- in (i) and (iii).
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Compute weights according to Eq. (13) [<——"i=7, T .t
(Jim,x (ng Jgrd) Jim)

Y

Set w = 0 for those mobile phases where
the solute never elutes

Y

Convergence
conditions fulfilled?

Fit the linear equation
using weighted regression

Fig. 1. Flow diagram illustrating the algorithm used for the calculation of weights (see S2cfjon

(v) Steps (ii)—(iv) areiterated, using in (ii) the model param- Poulenc Rorer, Alcoi@n, Madrid), esmolol (Polfa, Starog-
eters obtained in (iv) instead of E(1). Convergenceis  ard, Poland), labetalol (Glaxo, Tres Cantos, Madrid), meto-
usually reached within the first iteration. prolol, oxprenolol (Ciba-Geigy, Barcelona), nadolol (Squibb,

Esplugues de Llobregat, Barcelona), and timolol (Merck,
Sharp & Dohme, Madrid). Acebutolol, atenolol, carteolol,

3. Experimental celiprolol, labetalol, metoprolol, nadolol, oxprenolol, propra-
nolol, and timolol, were kindly donated by the cited pharma-
3.1. Reagents ceutical laboratories. The drugs were dissolved in a small

amount of methanol and diluted with water. The concentra-
SixteenB-blockers were studied: acebutolol (I&@lmaco, tion of the stock and injected solutions was 100 ang.dnl,
Alcobendas, Madrid, Spain), alprenolol, pindolol, sotalol respectively. These solutions remained stable during at least
(Sigma, St. Louis, MO), atenolol (Zeneca Farma, Madrid), 2 months at 4C.
bisoprolol, propranolol, practolol (ICI-Farma, Madrid), car- Mobile phases were prepared with acetonitrile (Scharlab,
teolol (Miquel-Otsuka, Barcelona, Spain), celiprolol (Rie- Barcelona), buffered at pH 3 with 0.01 M di-sodium hydro-
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gen phosphate and hydrochloric acid (Panreac, Barcelona).Table 1 o _ _
The mobile phases and drug solutions to be injected were Gradient retention timesg min) for different run$

vacuum filtered through 0.45m Nylon membranes (Mi-  Compound tg (min)
crondSepabratlons, Westboro, MA). Ngnﬁpurehwater (Barn- 20 30 20 50
s(t;eg , Syl ré)n, Btlaston, MA) Wa:js used t roughOl:jt. AI(I:gtone Atenolol 622 688 706 722
(Guinama, Barcelona) was used to measure the dwell time. 5. o0l 795 798 845 896
Sotalol 644 7.04 718 741
3.2. Apparatus Nadolol 1087 1300 1483 1658
Carteolol 1025 1248 1400 1532
An Agilent (Model HP 1100, Waldbronn, Germany) chro- indolol 1125 1344 1482 1615
h . d with Vvi Timolol 14.14 1784 2073 2331
matograph, equipped with a quaternary pump, a UV-vis Metoprolol 1513 1876 2194 2488
detector, and an autosampler, was used. All componentSacebutolol 1439 1814 2122 2421
were governed by a PC. An XTerra MS C18 column Esmolol 1722 2215 2611 2987
(150 mmx 4.6 mm i.d., Sum particle size), and a guard col-  Celiprolol 1728 2233 2678 3102
umn packed with the same material (20 mr8.0mm i.d.,  -2Petaol 1995 2626 3162 3689
icl . d. The d . Oxprenolol 1857 2376 2832 3269
5wm particle size) (Waters, MA), were used. The ( etection gisoprolol 1919 2490 2981 3448
wavelength was 225 nm for glblockers, except for timolol, Propranolol 2190 2864 3468 4061
which was detected at 300 nm. The flow-rate was 1.0 ml/min, Alprenolol 2216 2919 3533 4121
and the injection volume, 20l. The whole study was car- a Acetonitrile concentration was increased from 5 to 30% in all cases.
ried out at room temperature (252°C). Duplicate injec-
tions were made for each chromatogram. are shown inFig. 2 Boxes (A-D) and (E) correspond to

The dead time (1.73 min) was measured as the first base{socratic-to-gradient and gradient-to-gradient predictions, re-
line deviation, and the dwell time (1.53 min) as indicated in gpectively. (A—C) depicts the errors obtained with the linear
Ref. [23], by running a blank gradient where acetone was equation and different types of weights: (A) unweighted re-
increased from 0 to 1% in 20 min. For this determination, gressiorL (B) We|ghted regression Considering On|y the |oga_
the times at the beginning and end of the steep increase wergjthmic transformation (E¢(11)), and (C) the weighted pro-
taken. The signal was monitored at 280 nm. Home built-in cedure outlined in Sectiod.4. For comparative purposes,
routines, written in MATLAB 6.5 (The Mathworks, Natick,  two additional error boxes are shown, corresponding to: (D)
MA), were developed for data treatment. the quadratic equation conventionally weighted, and (E) a

straightforward prediction from gradient data (without any
transference between elution modes, that is, gradient-to-
4. Results and discussion gradient prediction). In the latter case, the linear equation was

Two experimental designs were carried out, one of them
inisocratic and the other in gradient mode. The ranges of ace-
tonitrile concentration in the mobile phases were selected to

avoid retention times too close to the void volume or above 47 )

60 min. In the isocratic case, chromatographic parameters ] 5

were obtained from six mobile phases containing 5, 10, 15, _ 37

20, 25, and 30% (v/v) acetonitrile at pH 3. The acidity en- E |

hanced notably peak shape, owing to protonation of column <. 2 7] ] <

silanol groups. Due to the relatively wide range of solute = 1

polarities (octanol-water partition coefficients in the range 1] 0

log Pow = 1-3), measurement of retention times in all mo- 1 x y

bile phases of the design was unfeasible. All available iso- 0= F--t====t = ===
cratic data were used to fit the retention models and predict : : x

the gradients. The repeatability of solute retention times in 1 : : . : :
the isocratic mode, obtained from six replicated injections, A B C D E
was in the range 0.05-0.15% (relative standard deviation). Fitting strategy

A validation gradient design, including four runs where the

modifier content was increased from 5 to 30% acetonitrile Fig. 2. Box and Whiskers plots showing the differences between experi-
in 20, 30, 40, and 50 min, was carried out to test the method mental and predicted gradient retention times. The predicted values were
performance. obtained from isocratic experiments (A-D) as source elution mode and dif-

. . : : ferent fitting strategies. The fitting with the training set of gradient experi-
Table 1shows the experimental gradient retention times ments (E) is given as reference. E2) was used in (A—C) and (E), and Eq.

for the 16 B'_bIOCkerS- The ?rrors (pr_ediCt_ed minus expe_ri- (1) in (D). Strategies: (A) unweighted, (B and D) conventionally weighted,
mental gradient retention times), using different strategies, and (C) weighted using the algorithm described in Sectidn
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used. The accuracy of this equation for gradient-to-gradient in the fitting parameters, since a certain lack of fit remains.
predictions was checked in previous w¢ii]. This does not happen when the correct equation (i.e. the
Prediction errors obtained using the different weighting quadratic one) is applied, or the linear equation is adequately
strategies confirmed that both the unweighted (A) and the tra- corrected with weights. In the latter case, the effects of the
ditionally weighted (B) regressions do not focus adequately inclusion/exclusion of a given experimental point on predic-
the fittings to yield the minimal error in isocratic-to-gradient tions are reduced, since the weighting function governs the
predictions. The more sophisticated weighted algorithm ex- importance of each experimeritg. 3 shows a comparison
plained above (C) is needed to enhance the predictions. Theof two experimental chromatograms with the corresponding
residuals obtained with the parabolic equation (D) are smaller predictions performed by applying the weighted (C) and un-
than those achieved with the linear equation (A—C). The weighted (A) approaches. As observed, the agreementis more
parabolic equation was numerically integrated, although a satisfactory with the proposed approach.
close algebraic solution exists, but involving the error func- Fig. 4illustrates how the weighted fitting works. In this
tion [24]. For other retention models, which do not have any figure, the differences in the calculated retention factors be-
analytical solution, the proposed approach may be a real al-tween each studied method (A, B, C, and E) and the parabolic
ternative. As expected, the use of gradients as source data (Efitting (D), which was taken as reference, are plotted as a func-
yielded the best result3able 2presents the relative errors,
expressed as percentages, for each solute. To avoid inflated
errors in the fastest gradients, a modification of the usual

relative error definition was usé¢#s]: 2 3
nog G
RE (%)= 100% (14) 1
> i—1lg.i

wheretg; and ?gyl- are the experimental and calculated re-
tention times, respectively, for thth gradient and is the

number of gradients in the validation set. As can be seen,
the errors obtained with the unweighted (A) and tradition- A L_j b
ally weighted (B) regressions depend on the solute. Sotalol,

nadolol, carteolol, and pindolol, which are among the fastest
solutes, gave rise to the highest errors. A c

As commented, not all experimental conditions could be — T T T T T T

assayed for modelling the retention of all solutes, since some 0 5 10 15 20 25
of them were eluted too close to the void volume or be- Time, min
yond 60 min. The inclusion or exclusion of a given point
in the experimental design may introduce drastic changes 11
Table 2
Relative errors in percentage according to Bat), for the 163-blockers
obtained with the strategies proposed in Section 4 0 9
Compound Fitting strategy 7 10

A B C D E d

; I

Atenolol 11 29 0.98 1.05 0.93 /J
Practolol 27 3.7 0.76 0.76 0.40
Sotalol 111 3.2 0.69 0.74 0.74 l
Nadolol 102 1.6 0.47 0.49 0.49 L e
Carteolol 154 4.4 0.72 0.69 0.53 [
Pindolol 132 3.7 1.01 0.97 0.44
Timolol 35 0.85 0.51 0.46 0.30 A £
Acebutolol 20 2.0 0.36 0.43 0.23
Esmolol 48 1.7 0.55 0.31 0.26 ) T ! T ! T ! T ! 1
Celiprolol 36 0.60 0.25 0.17 0.13 0 10 20 30 40 50
Labetalol 45 3.3 0.91 0.67 0.25 Time, min
Oxprenolol 17 0.30 0.33 0.45 0.27
Bisoprolol 17 0.40 0.66 0.34 0.15 Fig. 3. Experimental (a and d) and predicted chromatograms using the pro-
Propranolol 18 14 0.56 0.39 0.28 posed weighted strategy C (b and e), and the unweighted method A (c and
Alprenolol 15 11 0.32 0.20 0.14 f). Acetonitrile concentration was linearly increased from 5 to 30% in: (a—c)
Mearf 5.3 21 0.61 0.54 0.37 20 min and (d-f) 50 min. Compounds: (1) Sotalol, (2) pindolol, (3) acebu-

S - - tolol, (4) celiprolol, (5) labetalol, (6) alprenolol, (7) practolol, (8) nadolol,
Mean error (extended to all solutes) is also given. (9) metoprolol, (10) oxprenolol, and (11) propranolol.
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tion of solvent concentration, for three representative solutes:step (iii)). The plotted weights ifrig. 4 (top diagram) de-

a fast (sotalol), an intermediate (acebutolol), and a slow (al- tect satisfactorily the SIR, which is important to describe the

prenolol) solute. The differences between the experimental gradient elution behaviour. The SIR is the solvent concentra-
and predicted values obtained with the parabolic equation aretion region where high values of the weighting function are

also overlaid as squares. The weighting function for method found. As the polarity of solutes decreases, the SIR range is
C (Section 2.4) is depicted at the topkif. 4a—c. The mag-  shifted to higher values of acetonitrile concentration. Thus,

nitude of errors with regard to the SIR location should be the SIR is located in the range 6—8% acetonitrile for sotalol,

considered for the analysis of the results. As can be seen11-17% for acebutolol, and 18—-22% for alprenolol. These
linear fittings tend to produce larger errors when the total ranges are well located by the weighting function, which

concentration range is considered. Only the parabolic fitting will be translated in enhanced predictions with the linear

(which is represented as the zero line) gives low errors in the equation.

whole solvent concentration range. Both the unweighted (A)

and the conventionally weighted (B) fittings produce large

errors within the SIR. On the other hand, the results obtained5. Conclusions

with method C are close to those achieved using gradient

source data (E), yielding smaller errors within the SIR. The most widely applied model in gradient predictions is
Note that the weightsy, are set to zero at the largest con- the linear equation (E¢2)), since the derived general integral

centration above which the solute is never eluted within the can be algebraically solved under linear gradients. This may

runs in the gradient experimental design (see Se@idn present practical advantages in situations that require mas-
sive calculations (e.g. optimisation of gradient conditions).

For gradient-to-gradient predictions, where no data should
be transferred between elution modes, the results are highly
satisfactory. Gradients can be also predicted when an iso-
cratic model is available. However, these predictions can be

il
1.0q |
|
. ! deficient, since the linear equation is often unable to fit accu-
- | - rately retention data from wide solvent concentration ranges.
g P The problem is solved by weighting the regression in the

isocratic domain with factors calculated from error analysis.
The weights give more importance to the solvent concentra-
tions (solvent informative range) that are significant for the
desired predictions. The approach yields a quality of predic-
tions comparable to that achieved with more complex models,
but without requiring numerical integration, which represents
in certain situations a considerable save in calculation time.
The concept of SIR offers a different perspective on gradi-
ent elution, providing a deep examination of the information
that a given gradient extracts, which is related with isocratic
information. In the considered example, where the gradients
comprise an increase from 5 to 25% acetonitrile, the SIR
represents ranges of acetonitrile from ca. 2% for scarcely

0.6 \sx‘
i O A

e 024

|
|
|
|
|

; i

III /, : H 0, H

o = ANy retained solutes to 5% for retained solutes.

3 i The aim of the proposed methodology is not to detect the

|

! SIR to include further more experiments within it, but to use

|

i
l’ ! the original set of experiments (that can be within or out the
5 1‘0 1’5 2‘0 2’5 3‘()
(c) Acetonitrile, v/v

-0.64

SIR of each solute), to fit an unbiased equation. This equa-
tionis used to calculate weights. The weights are then applied
to the linear equation to obtain unbiased predictions. In the
Fig. 4. Errors for the different weighted strategies as a function of solvent given example, typically three to five isocratic experiments
concentration. The lines in the bottom diagrams correspond to the differences ' - -

. . ; by solute were developed. Problems requiring a wide scan-
between the retention factoig €alculated with Eq(2) and calculated with : . ..

ning of modifier compositions (e.g. 0 to 90-100%) are not

Eq.(1) (D), whose results were taken as referengg Five different fitting . : s
strategies (seBig. 2 for meaning) were considered: (A) thin solid line, (8) SO frequent, except in screening studies. If the covered range

long dashed, (C) thick solid, and (E) short dashed. The difference betweenis really wide, then the quadratic equation can present small
the experimental points and the parabolic predictions are overlaid as squareshjas which can affect the accu racy of the SIR.

The corresponding weighting function is plotted at the top of the figure for The bottleneck of the methodology can be the experimen-

method C. The vertical line indicates the maximal solvent concentration .. . .
beyond which the solute never elutes in gradient mode. Compounds: (a) &l WOrk needed inisocratic mode, but previous knowledge on

the components nature and a wise experimental plan can save

-1.0

sotalol, (b) acebutolol, and (c) alprenolol.
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considerable time. Also, no experiments are required when [9] S. Heinisch, E. Lesellier, C. Podevin, J.L. Rocca, A. Tchapla, Chro-
the chromatographist is adapting isocratic data previously matographia 44 (1997) 529.
acquired, taken from the literature, or obtained by molecular 101 W-D. Beinert, R. Jack, V. Eckert, S. Galushko, V. Tanchuck, 1.

modellin ; h In all th th tlined tech Shishkina, Int. Lab. 31 (2001) 16.
odelling approaches. In a ese cases, the outlined tec T11] G. Vivo-Truyols, J.R. Torres-Lapdsi M.C. Garéa-Alvarez-Coque,

nique will be valid. J. Chromatogr. A 1018 (2003) 169.
[12] G. Vivo-Truyols, J.R. Torres-Lapdsi M.C. Garga-Alvarez-Coque,
J. Chromatogr. A 1018 (2003) 183.
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